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ABSTRACT

The existence and uniqueness of solutions for the equation.

1 1 m m
max{L U- f #...IOU-ft , DUl -g) 0 in n

Ulan 0

are considered. Here LPO p I# 1... lm are second order uniformly elliptic

operators, Dlu is the gradient of u and fP, p - ,.,,g are non-

negative functions. We approximate the equation by a system of penalized

equations and prove the existence of solutions in the class Wi'(f) f W(f)
toc

* The uniqueness of solutions is considered in the class C'(fl) o~ C(Fl). notPA

only in the proof of the uniqueness but also in the existence proof, we use -

the notion of viscosity solutions.

Moreover we prove the uniqueness in the space C(?F) in the case m - 1.

we also prove the uniqueness of viscosity solutions of a minimax equation.

A74S (MOS) Subject Classifications: 35J65, 35J60
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SIGNIFICANCE AND EXPLANATION .'-,'

As the first order Ramilton.Jacobi equation is related to a control

problem associated with ordinary differential equations, the Hamilton-rJacobi-
U.-

Bellman (HJB) equation arises from a control problem with random noise. In

the stationary problem, the HJB equatiop has the form

sup {Leu fl) -0

where i? are second order linear elliptic operators with parameter a C A.

In this paper, we are concerned with the HJB equation of the formP. Pe

maxKIi.u - f)...L , f ! f- g- 0 -.

with the Dirichlet boundary condition ui-. 0. We cannot expect the

existence of smooth solutions because of the obstacle term [tDul)- g. We

prove the existence of solutions which satisfy the equation almost everywhere.

Using the notion of weak solution (so called viscosity solution) we prove the

uniqueness of the solution in the class of continuously differentiable

functions.

The method of the uniqueness proof is also applicable to other obstacle

problems. We prove uniqueness results in the class of continuous functions

for two model problems. ..3

By
i:t iJtion I

Avilliability Codes

Av,01 and or'
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The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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THE HAIILTON-JACODI-BELLMAN EQUATION WITH A GRADIENT CONSTRAINT

Naoki Yasada*

1. Introduction

In this paper we are concerned with the existence and uniqueness of solutions of the

Hamilton-Jacobi-Rallman (HJB) equation with a gradient constraint.

Let LP , p = 1,...,m be second order linear elliptic operators defined in a bounded

domain n in R .  For given non-negative functions fP, p - 1,...,m and g, we consider

the Dirichlet problem

max{L Iu . f ,..., 0U - fm, I " gi o in , ,
* (1.1)

Iasi
Here Du is the gradient of a function u.

Evans [2] was the first to treat the equation with a gradient constraint in the case

m - I in (1.1). Relaxing the restrictions in [2], Ishii and Koike [9] have proved the

. existence of solutions in the space W2 '() and the uniqueness in the class

() f C(f) with r > N.

On the other hand, the HJB equation has been treated by many authors. Using a system

of variational inequalities Evans and Friedman [6], Lions [10], and Evans et Lions [7] have

proved the existence of solutions in the space W2 ',(n) for uniformly elliptic fJB

equations. Moreover Evans [4], [5] has proved the existence of classical solutions for

uniformly elliptic His equations (see also Gilberg and Trudinger [8] Chapter 17). By

defining an appropriate notion of weak or viscosity solution, Lions [I] has obtained

uniqueness in the space C(F), with the aid of stochastic representation of solutions. In

[11I it is not assumed that the operators are uniformly elliptic, but rather that they

contain zero-th order terms with strictly positive coefficients. Note that our equation

(1.1) is a non-uniformly elliptic JB equation without zero-th order term.

Department of Mathematics, tobe University, Rokko, Tobe, Japan.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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In section 2 we state our assumptions and main result. Since we use a penalty method

to prove the existence of solutions, we introduce in section 3 our penalty systems and

mention their solvability. In section 4 we establish a priori estimates for approximate

solutions. Section 5 is devoted to finishing the proof of our main result. First we

obtain existence of solutions in the class Woc WI(A). Then uniqueness of
solutions is considered in the class CI(n) 0 C(F) by comparing an arbitrary viscosity Aw"

solution with a limit of approximate solutions. Not only in the proof of the uniqueness

but also in the existence proof we use the notion of viscosity solutions. , .-

In section 6 we mention two remarks on the uniqueness of viscosity solutions of

obstacle problems. First we show the uniqueness of viscosity solutions in the space Cdf)

when m - I in (1.1). Next we consider a minimax equation

min{max{Auu - f, u- - 1,u- oin n
12

uln - 0

Uan

and prove the uniqueness of viscosity solutions in the space C(n). In these proofs we do

not use any probabilistic arguments.

This work was completed while the author was visiting the Mathematics Research Center,

University of Wisconsin-Madison. The author would like to express his hearty gratitude to

Professor M. G. Crandall for his kind advice.

* °' ,
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2. Main result

Let 01 be a bounded domain in R with smooth boundary an. Consider second order

elliptic operators
( V - -ap v + bvx + clv, p - 1,...,m ,

(2.1) - . x

where m ) I is a given Integer. We use the sunmation convention throughout this paper.

We also follow normal usage to denote various function spaces such as c"(11), Wn.r(n) or

Wn"(l) etc. IDui denotes the size of the gradient of u, i.e. IDuI 2  
_ u2 "

x
i

We make the following assumptions on LP:

(2.2) &P' w2)

for some 6 > 0, all e R and p - 1,...,m,

(2.3) a7 , b , c -..

for p-1,. ,. and 1 (1, j (4,

(2.4) cp co

for some constant c. > 0 in np ,...,m,

(2.5)a 1  ai

for p-,...,m, 1 i,WJ( .

On given functions fP, g on n, we impose the following assumptions

(2.6) fP, g (2()

for 1)- 1.....,

(2.7) fp, g : 0

in n for p1,...,m.

Under these assumptions we may state our main theorem.

Theorem 2.1. (i) Tinder the assumptions (2.2) - (2.7), there exists a solution

u C 2,w(n) r) WI'm(1) of the equation
toc

m.x{L u f ... 'Lmu - f ,DUj - g) 0 a-e. in n
(2.8) ula -o.'-

(ii) If, in addition, g > 0 in n, then the solution of (2.8) is unique in the class

C1(0) ' C(W), where the solution Is understood as a viscosity solution satisfying the '6

* ~boundary condition. 5..

... ..............-.........-
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3. Approximate systems

in this section we construct approximate systems for (2.8). Let C' If(R) be a

fucinsuch that

(3.1)
~ ,*"(t) 0on R

For C > 0 we put 8,(t) - ye£(t) - *I(t/c). Note that

(3.2) Be()Ct 0, )on R

we consider the following approximate system:

Lpup + B(Dp12 -
2)+y (up - ur') - f P in f

=~a 0F p IF ... .,mp where - u

*To prove the existence of solutions of (3.3), we use the method of successive

approximation. In the sequel we omit the subscript E for simplicity.

Define approximate solutions u~n)I p -1..mn -1,2,.. .g for (3.3) by induction

on n as follows:

* Virst, let -0for p -1..,. If u. 1  p - ,.,, have been determined,

then we define ufn)f IF -1...,Om, as the solution of

LpYJ gR~u ~2  ) + Y(u -u 1  fP in nl
(n) (n) (n) (n-I)

-: ~~(3.4) u +

(n) anl~ wee 1(n-1) u(n-1) -

It is known that there exist urn) C c3 ,8(i p - ,.,, for some 6 c (0,1) which

* solve (3.4).

If we see

(3.5) *up I < const
(n)

for p =l.,mand uniformly in n, then existence of the solution

* p 2,r. I,r...
UP OE W (n) r)W n (1 < r < -) of (3.3) follows from linear elliptic theory.

Moreover, by applying regularity results for elliptic equations, we have p 2,C

-4-
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we defer the proof of (3.5) to the next section since its proof is quite simailar to

that for a priori estimates independent of E.

%.



4. A priori estimatesI ~ ~~In this section we shall derive some a priori estimates for solutions ~,p -1.

IN of (3.3) which are independent of C > 0. we always assume (2.2) -(2.7).

Lemm~a 4.1. We have

(4.1) 0 4 P 4C in S1

(4.2) 0 4 4 C on

Here and hereafter capital C denotes various constants depending on known constants and

3 /an denotes the inward normal derivative on an.

* Proof, let wP c C (nl) be the solution of

m Lpw0 =fp in

Since O~UP 4 fp upI 0, applying the comparison theorem, we have up C wp in l

Let x0 £c) rp0  be such that

*(4.4) uC (X 0 min u~ C(x)
xen

We shall see u 0(xO) 0. We suppress the sub and superscripts C, p0  and denote
PO +1

v . First, consider the case xO c nl. In this case we have Du(x0 ) 0 and

u(X0 ) 4 v(X0)). Hence, we have applying the maximum principle,

0 -a~1  (x)
ij 0

- f~ ) -6( 12 2
fux R ) I - q(x 0 ) )-Y(u(x 0 ) v(X 0 )

(X h1 )u (x)- c(X )u(x)

1 ~ 0 -cx 0 u0x0

From (2.4) and (2.7), we qet u(xo) > 0.

-6-



In the case x0 C 3n, it is obvious from the boundary condition that

0 -u(xO) 4 u(x). Therefore we have shown (4.1), and (4.2) is a consequence of (4.1)..

IRmark. To get L 0(n) and W 1'.(3n) estimates of the successive approximate solutions

U #we need only make a minor modification. The upper bound up 4 w1'(x) still holds.f(n ~(n) :

We shall see 0 4 u~n)(x) by induction. It is obvious in the case n - 1. Assume thatIl

0 4 u .. ~(x) for all p and x c Ul. Let x pl 0 b uhta 44 od hr
p01 P esuhta p0  .4 ho+ldswee

is rplaed y in, If u(n) (x 0) < 0, then x 0n and y C(u(n) (x 0) - U (n-1.) (xo)) 0

Therefore we have by the same calculation at 10 as in the proof of Lemma 4.1,

0 > f (x 0 C (x 0)u ()(x0

Since this contradicts the assumptions (2.4) and (2.7), we get 0 < ~)()

In the following we write ui, uijl aij,k, ... for uxi, 'Uxj aijlk,.

Lemma 4.2. We have

(4.5) £UP 1,. 4

Proof. consider the function

(4.6) WE (x) = u ~oi2 -u

where X 0 is a constant to be selected later on. Let 10 c l p0) be such that

P0  p(4.7) w (x)0 max. WC(x)

p-1,...,.

We again suppress the sub and superscripts C, p0) and denote V = E

B(IDU11 _ g2), y(.) _ j(u-v) and etc.

First consider the case 10 c P. In this case we have by the maximum principle,

0 4 -aiiwij

- -2aijukiukj - 2aijukijuk + X~ aijuij

, -2aij,1..iukj - 2uk8 (')(2uktut - (g2 )k)

-
2uky'(*)(u), - vk) + 2.k (7;2u + "

+ A()+ Xy(.) + A(r) u - at x

-7-
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Hee' 2 
Oiji,~j biuki -b±,kui Cujk -k

B' - b +1 cu

where ye have used (3.3) and differentiated it once.

Therefore we get

22 2

I r(*) 12 uk U vk) + CIDul + CIDU! JID ul

++B( +y()

* Continuing the calculation# we obtain

0 (-61D 2u,2 + j~1 + )XC(,Dul + 1)

(4.8) [ (* 4 u u u~ 2u (g2) -( ut - g2)

- 2 '()Eu(u~ v) - (u -V)]

where we have used (3.2). Since

PO P0)+l
2

uk(41k -vk) A (U -V)) we (x0 )- wt. (X)) > 0

we have

(4.9) -Y(' 2uk(uk vk) A )(u -v)] 0

On the other hand, since wt(xo) -0 we get

4 ukuu 21utut

Therefore we have

2 2
-8(* Euxkuo -

2 u k(q ~k - )(uu g, q

(4.10)

- -B'() (A ou?2  q)k +~ Ag2

* Comhining, we get

0 4 cjouj2 + ACIDoul + 1)

_8'(.) (A!jDuIj2 2uk( q2)k + A .2,



We may assume that I') at xO, because otherwise we can itediately derive a bound

for j~uI2 and therefore for w. Thus we have

*(4.11) 0 4 (C-X)iDu!
2 

+ CI~l, + 2u 2 2

Now we choose X~ large enough to obtain a hound for !~uj2  and therefore for w at x0 . P'

Next consider the case xO c 3nl. In this case, we get a bound for w at once from

W' n estimate.

*Remark. To obtain a W1'(n) bound for the successive approximate solutions we proceed as

follows. Consider the function w~n) defined by (4.6) where P' is replaced by upn

and let pa, xO be as in (4.7). We may assume xO e n). We shall show the boundedness of

*D)UP by induction. By the same calculation in Loemma 4.2 we have (4.8). Bly the
(n) )P Pt

*induction assumption we may assume PO )(x0 ) ) POO.)C 0  Then we have (4.9). (4.1.0) is

also satisfied in this case. )9ence we get (4.11)0 with constants C independent of n.

1,emma 4.3. We have

(4. 12) 1 u1 (C£i 2,
tfoc~n

Proof. Let be afunction in C M (n) such that 0( 4 C 1. We shall derive a bound of

X- max C(xflD u (X)I

Without loss of generality, we may assume that K ; 1. Let xO c n), p0  be such that

2 0K - (x )ID u (x )I and consider the function
00

w -x 2xI2upx2 PO p Iul u(x)I2
CxIuxI + A)z (x)& Ct x 0)u E i(x)+U ,

where Xu 1 are constants to be selected later on. Let x, e , be such that

wi (x) max wPx£ x? (x)

We may assume that x, c n).
p +1

In the following we suppress the sub and superscripts E, p1  and denote v u E
PO 2 g2

a - a k f(xO) BC) 8(llu! - Yg, 1i) -(u - v) and etc. Using the mAximum principle

-9-
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and the differentiated squation of (3.3), we have at x1

0 a -C a1 wv11

24 a 2 2 iuik
(4.131) - 2C4 :U~~~ a- 21uC a iu,:~a

~ij kliktj jik

-C 2 (2C 2 k+ AnkL){f"(" )11DI12 -
2 k(Y IDu 2 

- 2)t + Y( )u-v)lkU-V)L)

-C 2201-{12C 2u la:+ *.G )(a 2 
- qg2 )+uVI + 2 k(Du 2

+ 22Ck ,  K~k%(I £# + 2k1;2k u+f)2 2+
-C Y*(-)((2r.% A~ nWa k)(u-v) kLt 2puu-uv)k

~2 2 + B3.A + f 2 -2'2
(2C u 2 + Adk ) ( 21 -(D u o

kI k1 k1 k k)

2 2 ~ 2C

2-Ci akLuu. -) 211U-l ta2jukjt

-%
* Here B0 is an i-th order differential operator. %.. *

) {1 2,.u
2

-XCDu[-( +)} .,

If we choose A such that A)- 2K2 /0, then we have

22 Uk + kg;, (lu- _k2r 2 1 ukjtu-v 12k

* (4.14) (2C ukt + Anok)ki~ 2 )II

*for anyEe N

On the other hand, since wi - 0 at x, we have I

2416 )I'1 2)el

(2C ukj 2 An* q ~k(D1 2 d.-

kk k1
1

(l )k 0x1  10:

-2C2 + -X + 4C -u

2 22
* (.1) -(~)ihktui - tk k1~~iucQ k1 k

,2Vai:u 2)dk-o- q2 ~

)K{2(XO 2)CID uI A CID u? )

We also have

2
(2C + Ana1 )(u-v) + 2

we (416(x I)

V %
-. ° *.-. -.

., ':.?* ., -:



The last six terms In (4.13) are estimated as follows:

C2 (2 1 W4k ( + f 1)+ 2 2u (-~

- 4r ( C ) Iahijuklutj 2A 2 i±G aij.tj

(4.17)

- C2 (C )jjaijujtu, - ~ jijk

< C 4 1D3 uI2 +.12CK 2 + C 2C

Substituting (4.14) - (4.17) Into (4.13) and using (2.2) we have .

2 212 +A22 +ACK+U2C0 4C-2u9C Iul+C CK C

(4 25 IS~~' ){2 (Xe2) D02 u12  A CID 2 u I (A 4,j )

*at x, where X ;P229

First consider the case

21MOC 2ID2.12 < A2CX2 + ACIx + MCat

Then we have

p1  2 2 2P 1 2+Uw (x 1 )I XCE.(x )ID (i (x + 4 2
+ z

(AC+1 2 Xc C C +u
25T8 X) ~K + 32t~- K + -C

if we choose ui so large that 4A4C -C 2iiS, then we have

e1 2

On the other hand since ~

dP PO P ~O PO PO PO .-
M ktukt(x) 0 \k (x 0 (x N) + c (x 0 u (x 0) f (x 0

)-C

* we have

* (4.19) P0 x~ 2 -C~ C .

Therefore we get

d%
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(4.20) 2 -

which implies the boundedness of K.

Next consider the case -

20~ - )~I 2uI 2 C ACjV 2uI + (X + ia)C a

If we choose X. uatisfyinq 1 4 2(XO - 2), then we have

C22D.1 4 XaXID2.1 + (X + ia)C at x

which implies the boundedness of r~x)IV 2u P1 I (xfl ence we have

p1Wr(XI) CK +C

* By (4.19), we also have (4.20) in this case. Therefore the proof is completed.

-12a.
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5. Proof of the main result

In this section we shall prove the existence of solutions in Wco(0) r) W1 e ]() and

the uniqueness of the viscosity solution in the class C (0) n C(T), which completes the

proof of Theorem 2.1.

Lamm 5.1. !Jhere exists a solution u of (2.8) belonging to WI ;(n) w"f

Proof. From a priori estimates in the preceding section, we can choose a sequence Cj

(which we simply denote C) such that

u p + Up .Du D u uniformly in
( 5.1 ) ,

D2u 2u weakly in L (Q) with r (

Since Y (uP - ur) are locally bounded, it follows that the up defined in (5.1)

satisfy U 1 .... U - U C W2 as (fl)_ r Wl(0). We shall prove that u solves (2.8).

First we note that LPuP - fP ( 0 a.e. in n. Hence we have zOu - fP ( 0 a.e. in n, .*..

P - 1,...,m. Since B(I IUp1
2  q 2 ) are also locally bounded, we qet

(5.2) max{Llu - fl ,...,Lu - f", jol - q} , 0 a.e. in n *

To prove the inequality in the opposite direction, it is sufficient to show that u

is a viscosity supersolution of (2.8). Let 9 c C
2
(0) and assume that u -9 takes its

local strict minimum at x0 C 0. We shall show

(5.3) max (-ap 9~ + P + cu - fP, -Do g) 0 at x0
p-i,.. *-m--

Since IDp(xo)l g q(x 0 ) implies (5.3), we may assume IlD(xo)I < q(x 0 ). Since -'

* converges to u uniformly, there exists a sequence {xP,) C n such that

(i) 011m x
1 

- x for any p ,...,m,
C+0 C 0 OL

(ii) UP - 9 attains its local minimum at x

(iii) INy(x-)lI C q(x!)

For each C, let p(e) be such that

(5.4) (ua("-,,(x: ),- min.~ -9(~ .
(u~~~~~,°% p i," nn(pP(p

P-I ......

-13--.* * '' -
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Since p varies in a finite set there exists p which appears infinitely many times in *

(5.4). Consider much p and E such that p~C) - p. Then we have 5 1 P 2
-g) 0

and Y,(uC - u ).1 0 at xp. Since up is also a viscosity supersolution of (3.3), we

get

-ap 9 + bV + cp u fp at P~
ij ij i CC

Passing to the limit as C + 0, along which we take p -p~C), we have (5.3). -

Lisma 5.2. Assume q >0 In n). Then the viscosity solution of (2.8) is unique in the

class cCflQ) r C65).

Proof. By Lemma 5.1 we have a solution u belonging to WifC) Wl M1 ( ) andtoc

approximate solutions up which converge to u along a subsequence. In the following we

fix such a u and convergent approximate solutions u~(simply we denote P4).j %

Let v be any viscosity solution of (2.8) which belongs to C1 (n )) (~C(C

First we claim that v 4 u in n). if not, there exist xO c a) and p0 such that

* (.5)(v -u C)(x0  max Cv -u)(x) > 0

Since v Is a viscosity subsolution, we have

~aiiu, + b U£, + c v -Cf at x

(5.6) 
i ~j IU"

p0)IDUi Cx )I (g(x)
C 0 0

P02 2)The second Inequality in (5.6) implies 0,(ID1 -q 0 at x0  and (5.5) implies
p0  PO +1

YC u E u E -0 at x0 . Hence we have

0o0  0 p PO 0  p
& a u Ej+b hIuE£L + c u - f at X

*subtracting this from the first Inequality in (5.6), we qet

c (x0 )(V - tI )Cx0 ) 4 0

-14-
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1*

which in a contradiction.

Next we shall show that Pu 4 v in f for 0 <p 1. If not, there exist

p e (0,1) and x0 c n such that

(5.7) (v - Pu)(x O) w imn (v -Pu) < 0

Since v C C1 (n) we have !Dv(xo)t - PiDu(Xo)! < g(XO). Then there exists a ball U with

center x0 satisfying

(5.) IDVI < g in U .

This implies that v is a viscosity supersolution of

(5.9) max (LPv - fP) - 0 in U

* Consequently v is a viscosity solution of (5.9) in U. Considering (5.9) with boundary

condition * - ulo, it is known (Evans (41, [S], Gilbarg and Trudinger [a] Chapter 17)

that (5.9) has a smooth solution. On the other hand it is also known (Lions [11]) that the

viscosity solution of (5.9) is unique. Therefore we can conclude that v is the smooth

solution of (5.9) in U.

By a selection lema, there exists a measurable function p : U+ (1,....w} such that

,P(x)v - fP(x) - 0 a.e. in U

, Since u is a subsolution of (5.9) we have

(5.10) Ip(x)(v - Pu)(x) - ( 1 -)fp(x) ) 0 a.e. in U

On the other hand by Bony's maximum principle we get

(S.1t) lim ess t( (v-) + bi (v-Pu)i) 0
:. X' x 0

Combining (5.10) and (5.11) we have

c P(Xo) (x0 )(v-pu)(x 0 ) -(1- P(Xo (0)) 0

which contradicts (5.7).

Since P is arbitrary in (0,1) we have v u in ft. This completes the proof.

By Lammas 5.1 and 5.2 we have completed the proof of Theorem 2.1.

-15-
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Since lAimma S.2 asserts that any viscosity solution in C (Q) r) C(ff) can be

approximated by solu1tions up of the approximate system, we have the followinq comparison 
I

result.

Corollary S.3. Let u eC(d) beea viscosity solution of

-Amax (Lpu - fp, lou1 - q} 0 in f

uj 0 0

and iie C M ) C(Fl) be a viscosity solution of

* (2.8)

max (L~ P D -g' 0 in

-0

if 0 -C fP < IF, p - ,.,uand 0 ( 9C g in 0. then u4; inn0.



6. Remarks on the uniqueness of viscosity solution for obstacle problems.

In this section we show that the uniqueness of viscosity solutions for some other

classes of obstacle problem can be proved by the same method as in the previous sections.

To avoid needless repetition, we consider the modeled operator Lu - -Au + u. Note that

the folloving proofs are based on the convergence of approximate solutions of penalized

equations and do not use any probabilistic arguments.

6.1. The case m - I.

Consider the equation

maxf-Au + u -f, IDuI - g) - a.e. in nl

U 6.1) - '

where f and g are smooth and f ) 0, g> 0 in n. This equation has been considered

in Evans (2], [3] and Ishii and Koike (9]. They proved the uniqueness of solutions in the
W2,r .

class W oc(0) r C(n) with r > N. We proved in lemma 5.2 that for more general equations
c s q i

the viscosity solution of (6.1) is unique in the class C (0) r C(iF). Moreover in this

case we have the uniqueness in the space C(F).

Theorem 6.1. The viscosity solution of (6.1) is unique in the class C(6).

Proof. Let u be a solution of the approximate equation

4Aue + u + C(,O,2- 92) - in n

(6.2)

By the same argument as in sections 3, 4 and emma S. I (or by Evans [2]), there exist

u 1) ) W'() and a subsequence u. (simply we denote - ) which converges

to u as in (5.1).

Let v c C(F) be any viscosity solution. By the same argument as in the first claim

in TAm 5.2 we have v 4 u in f.

We shall show that Pu 4 v in n1 for 0 < p < 1. If not, we can find e c (0,1),

x ( (again we denote j- C) and x0 e n such that

-17-
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.7 7W+

( x x a s c 0 o ,.

(6.3) (11) (v - oullxa) - min (v - Pu)(x)

u(ii) (v Ou)(x O ) - min (v - Pu)(x) < 0 •
xclT

Since pIDu(xo)I < g(xo) we have IlDaC(x,)I - g(x,) for small C. Since v is a

viscosity supersolution, this implies

(6.4) - PAu. + v ) f at x .

rrorm (6.2) we have

-PAU 6 +PUI(Of innA

Subtracting this from (6.4) and letting c * 0 we have

(v-Pu)(x O ) - (1-P)f(x) ) 0 •

This contradicts (6.3 - iii). .

6.2. Variational inequalities

Consider a minimax equation "',

minmax{-u + u -f, u - 1 },u - 2 } 0 a.e. in ,

where f, #1 and #2 are smooth functions satisfying *2 ' *1 in A and

*2'3n 4 0< *,1a-
It is convenient to formulate the notion of viscosity solutions of (6.5) in the

following manner. We say that u c C(T) is a viscosity solution of (6.5) if both (0) and

(1) holds

(0) *2 C u 4 in A, uln 0 .

(1) Let 9 C C
2
(a)

(6.6) (i) if u - attains its local maximum at x. c A and

*2(Xo) < u(xO), then -A + u 4 f at Xo

(ii) if u - y attains its local minimum at x0 A 0 and

u(x O ) < *1(xo), then - + u f f at x O.
mr-,

. % 5 . . . . 'S. .



since (6.5) is equivalent to the following variational inequalities with bilateral

constraints i

#24u4 1in n' UI 380 0j .

- Au +u f on (xf e l* 2 <u <*

- Au + u ;0 f on {x a f u 2)

- Au + u 4 f on {x e fi u

it is known (fensoussan et Lions 111, Chapter 3# Section 5) that there exists a solution

u w2 ,r(n) with r > V which is a limit of solutions u. of the penalized equation 44

- ASU + u C+S~ -$)-(1*0E0 -u) f in D
(6.7) a a2 a

tan- 0

Theorem 6.2. Let v C C(6l) be a viscosity solution of (6.5). Then we have u -v in

Proof.* We prove only v 4 u in n) because the inequality in the opposite direction can

* be proved similarly.

if v 4 u in n) does not hold, there exist x. (again we denote -ac) and

1£ c n such that

Mi xe *x asn .

*(6.6) (ii) (v - ud (xa) max (v - ua (x)

(iii) (v - u)(x 0 max (v - u)(x) > 0

Since *'2 4 u < v at x0, we have *2 < v and u. v -C near x(0. Then

(6.6 - i) implies

* We also have BN(a I e 0. H4ence from (6.7) we get

(610 Au + u pf at x

Combining (6.9), (6.10) and letting a + 0, we have

S(V- u)(xo) 4 0

* which is a contradiction.
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